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The motion of a mechanical system of coaxial axisymmetrical bodies of variable mass in a translating system of coordinates is 
considered. A theorem on the change in the angular momentum of a system of coaxial bodies of variable mass with respect to 
translating axes is given. The dynamic equations of motion are constructed using the example of two coaxial bodies. Assuming 
that the relative displacements of the centre of mass, due to a change in the mass of the system, are small, approximate solutions 
are found for the spatial orientation angles and the condition for reducing the amplitude of nutational oscillations. The results 
obtained can be used to describe the motion of spacecraft, constructed in coaxial form, when performing active manoeuvres 
with a change in mass. © 2005 Elsevier Ltd. All rights reserved. 

The motion of a spacecraft with double rotation and fixed mass when there is a small asymmetry was 
considered in a previous paper [1]. 

1. F O R M U L A T I O N  OF T H E  P R O B L E M  A N D  A T H E O R E M  
ON T H E  C H A N G E  IN T H E  A N G U L A R  M O M E N T U M  OF 

A S Y S T E M  OF C O A X I A L  B O D I E S  

We will consider the problems of deriving the equations of motion of a system of k bodies of variable 
mass with respect to translating axes and of obtaining approximate analytical relations for a free system 
of two coaxial bodies. The dynamic symmetry is not disturbed during the change in mass. 

We will introduce the following system of coordinates (Fig. 1): P~rl~ is a system of coordinates, fixed 
in absolute space, OXYZ is a moving system of coordinates with origin at the point O, the axes of  which 
remain collinear with the axes of the fixed system during the whole time of motion, and OxiYiZ i are systems 
of coordinates with a common origin, rigidly connected to the i-th body (i = 1, 2, ... , k), rotating 
with respect to the system OXYZ. We will choose as the origin of  coordinates of  OXYZ a point lying 
on the common axis of  rotation of the bodies and coinciding with the initial position of the centre of 
mass, Points forming part  of the system are distinguished by the fact that they belong to one or other 
body, and hence when writing expressions we will indicate that points belong to the ith body by the 
subscript vi. 

To construct the equations of motion we will use the "short-range" hypothesis, according to which 
particles which obtain a relative velocity when separated from the body no longer belong to the body 
and in no way act on it, in which case the theorem on the change in the angular momen tum of a system 
of variable mass [2], written with respect to the fixed system of coordinates P~rl~, takes the form 

k dmv, dKe e R e e 

dt = M p + M p +  y S i, S i = ~ r v x - - ~ - v v ,  (1.1) 
i =  I v i 
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where M~o is the principal moment of the external forces, M R is the principal moment of the reactive 
forces, and S e is the sum of the angular momenta of the particles of body i, rejected in unit time in their 
translational motion with respect to the fixed system of coordinates. 

The angular momentum of a system of k bodies in the system of coordinates OXYZ (Fig. 1) is given 
by the formula 

k k 

K p =  Z Z r v x m v v v  = Z Z [ ( r 0 + p v ) x m v ~ ( v o + t ~ i x p v ) ]  (1.2) 
i = 1  v i i = 1  v i 

where toi is the absolute angular velocity of body i and the system of coordinates OxiYiZ i connected with 
it. 

To write the theorem of the change is the angular momentum with respect to the moving system of 
coordinates OXYZ, we will use the idea of a centre of mass for each body and write the auxiliary relations 

dPc, 
dt - ~ i x  PG + qc, 

dmv, Fdmi miqc,] 
= o ,x 

vi 

where Pci is the radius vector of the centre of mass Ci of body i in the system OXYZ and qci is the relative 
velocity of the centre of mass Ci, due to a change in its position with respect to the bodies, due to the 
variability of their masses. If we use these relations and group the points of the system in accordance 
with their membership of the bodies i, we can write the theorem on the change in angular momentum 
with respect to the system of axes OXYZ in the form 

k dm v k d K  i e R i 
,~  . ~ o _  M o + M o +  ~ . ~ _ ~ p v X _ _ ~ ( t o i x p v ) _ p c x m w  ° 

i = l  i = l  v i 

(1.3) 

where M{) and M~ are the principal moments of the external and reactive forces with respect to the 
point O. Expression (1.3) corresponds to the assertion of the well-known theorem [2], taking into account 
the grouping of the terms according to the membership of the points of the body i (i = 1, . . . ,  k). 

Using the idea of a local derivative for the angular momentum vector of each body in the system of 
coordinates OxiYiZi connected with the body, rotating with respect to OXYZ with angular velocity to/, 
Eq. (1.3) can be rewritten as follows: 
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' o] Z L~ + ~1~ i x Ki, = 
i = 1  

k dmv, 
M ~  + R = v Mo + 2 Z pv, x - - ' ~ (~ i  x Pv,) - Pc x mw 0 

i=1  v i 

(1.4) 

We have indicated in the subscript outside the brackets of the local derivatives the systems of coordinates 
in which they are taken. 

Equation (1.4) expresses in vector form the theorem of the change in the angular momentum of bodies 
of variable mass with respect to the translating axes. 

2. A SYSTEM OF TWO COAXIAL BODIES 

We will consider the free motion of a system of two dynamically symmetrical bodies, where only body 
1 is of variable mass. The rejecting of point masses, when there is a change in mass, occurs symmetrically, 
so that the vector of the reactive forces is directed strictly along the axis of rotation. Body 2 does not 
change its inertia-mass characteristics, calculated in the system of coordinates Ox2Y2Z2 connected to 
the body, and, consequently, produces no reactive forces. The centre of mass of the system, due to the 
change in the mass of body 1, is shifted with a certain velocity qc strictly along the longitudinal axis. In 
Fig. 2 we show the case when, at the initial instant of time, the mass of the second body is greater than 
the mass of the first one. 

We will write the angular velocities and the angular momenta of the bodies in projections onto the 
axes of their connected systems of coordinates 

I~i "= piii+ qiJi + riki (2.1) 

Kl, o = A l ( t ) ( p l i l + q ~ j l ) + C l ( t ) r l k  1, K2, 0 = Az(Pzi2+q2J2)+Cer2k2 (2.2) 

where A i and C/are the equatorial and longitudinal moments of inertia of body i, calculated in the 
corresponding system of coordinates connected to the body, and {ii, ji, k/} are the unit vectors of the 
s y s t e m  OxiYiZ i (i = 1, 2). 

The bodies of the system can only rotate with respect to one another in the direction of the common 
longitudinal axis, which coincides with Oz2 (and which Ozl). Here we will denote the angle and velocity 
of twisting of body 1 with respect to body 2 in the direction of the longitudinal axis Oz2 by 3 and 
c = 8 respectively. The angles of spatial orientation of the coaxial bodies with respect to the translating 
system of coordinates O X Y Z  are indicated in Fig. 2. The relation between the angular velocities and 
the angular accelerations of two bodies in vector form is given by the formulae 

~ l  = ~ 2  + ° ' ,  ~1 = e2 + ~ (2.3) 
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where ~r = (0, 0, g) is the vector of the relative angular velocity of the bodies, which has a projection 
only onto the common axis of rotation Oz2. The relation between the components of the angular 
velocities for the two bodies has the form 

Pl = P2C°S~5+q2sin& ql = q2c°s~-P2 sin& rl = r2+O (2.4) 

For free motion of the system (M~9 = 0, M~ = 0), the theorem on the change in the angular 
momentum (1.4) in translating axes O X Y Z  can be rewritten in the form 

dmv 
x --~--(tol x Ov,)] + 

~ 2 

+(dK2'O) + 2~, tOixKi, o = - P c X m W o  
~. dt JOx2yzz2 

i=1  

where 

(2.5) 

Pv, = Xv,il  + YviJl + z v ~ k l  (2.6) 

By projecting the expression inside the square brackets in Eq. (2.5) onto the axes of the system 
OXlYlZ 1 and using formulae (2.1), (2.2) and (2.6), we obtain 
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From the theorem on the motion of the centre of mass of a system of variable mass [2] and expression 
(2.3), the following relation must hold 

mWO = liaR1 -- ~g2 X m P c - -  m~l} 2 X ~ 2  x Pc  (2.10) 

Bearing in mind that Pc = (0, 0, Pc), Pc x oJ 2 x 002 x Pc = 0 and also (2.9), using Eq. (2.10) we will 
represent the vector (-Pc x mwo) in terms of projections onto the axes of system Ox2Y2Z2 

2 . °  

- [ m P c  X Wo] = mpc[pl  2 + OJ2 + 0k2] (2.11) 

Taking relation (2.11) into account, we will write Eqs (2.8) in the form 

2 
(A3(t) - mPc( t ) )p  2 + (C3(t) - A3(t))q2r 2 + Cl(t)q2~ = 0 

(a3(t) - mP2c(t))gl2 - (C3(t) -a3( t ) )p2r  2 - Cl(t)P2t~ = 0 (2.12) 

C3(t)t~2 + Cl(t)(J = 0 

where pc(t) is a known function of time. 
We will add to the three dynamic equations (2.12) an equation which describes the relative motion 

of the bodies. We will use the theorem on the change in the angular momentum in terms of the projection 
onto the axis of rotation, written for the first body 

dKzldt ( dmvl_. ) 
- M~+ ZPVl X ---'~-~t PVl 

\ V  1 Z 1 

where Kz, = Cl(t)q is the projection of the angular momentum of the first body onto the axis of rotation 
and M~ is the moment of the internal interaction of the bodies. Since the centrifugal moments of inertia 
of the body are zero, this equation takes the form 

Cl( t ) (~  2 + ~) = M a (2.13) 

We will supplement the dynamic equations (2.12) and (2.13) by the following kinematic relations 
(Fig. 2) 

1 
~, = pzsintp+q2costp, ~/ = c---~s@PzCOStp-q2sintp) 

(2.14) 
sinT. 

(p = r z - c ~ ( p 2 c o s t p - q 2 s i n t p )  , ~ = 

If, when the mass changes, the quantity mpZ(t) remains small compared with the overall transverse 
moment of inertia of the systemA3(t), the system of dynamic equations takes the form 

a3(t)p 2 + (C3(t) - a 3 ( t ) ) q z r  2 + Cl(t)qzt~ = 0 

a3(t)q2 - ( C 3 ( t )  - A3(t))p2r 2 - Cl(t)P2~3 = 0 (2.15) 

C3(t)i" 2 + C l ( t ) t ~  = 0 ,  C l ( t ) ( t =  2 + 6 )  = M~ 

It follows from system (2.15) that the equations of motion of coaxial bodies of variable mass, in the 
case of small relative displacements of centre of mass, differ from the equations of motion of coaxial 
bodies of constant mass [1] in the fact that the moments of inertia vary with time. When the velocity 
of relative twisting is identically equal to zero (o = 8 - 0), Eqs (2.15) are identical with the well-known 
equations of the free motion of a dynamically symmetrical body of variable composition [2, 3]. 

3. S O L U T I O N S  FOR THE A N G L E S  OF O R I E N T A T I O N  OF 
A C O A X I A L  SYSTEM OF TWO BODI ES  

Suppose there is no moment of internal interaction between the coaxial bodies (M~ -- 0), the final 
displacement of the centre of mass is small, and the equatorial and longitudinal moments of inertia of 
body I vary linearly 
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Al( t )  = A l - a t ,  Ct(t) = C l - c t ;  a = ( A 1 - A l f ) I T ,  c = ( C t - C l i ) l T  (3.1) 

where A1, C1, All ,  Clf  are quantities corresponding to the beginning and end of mass change process, 
and T is its duration. 

We will introduce new dimensionless variables G and F by the following replacement 

p2(t) = o3G(t )s inF( t ) ,  q2(t) = o3G(t)cosF(t )  (3.2) 

where m = (r0(A 1 + A 2 - C 1 - C 2 )  - Cl13O)/(A 1 -]- A2) is the characteristic velocity. The variable G in 
formulae (3.2) is the dimensionless transverse angular velocity of the system of bodies 

G(t)  = (p2s inF  + q2cosF)103 

while the variable phase F defines the angle between the transverse angular velocity vector and the Oy 
axis. 

System (2.15) can be written in terms of the new variables as follows: 

= O, ( A - a t ) ~ "  = A m - n t ;  r 2 = ro, 13 = 130 (q  = r0+13o) (3.3) 

where 

A = A l + A 2, n = a r  o -  e (r  o + 13o) 

System (3.3) has the exact solution 

G = L o, F ( t ) =  S o + a t - A ( a m - n ) l n ( 1 - A t  ) 
a 

(3.4) 

where L0 and So are the initial values of the amplitude and phase. 
Suppose the ratio of the change in the equatorial moment of inertia of body 1 to the initial equatorial 

moment of inertia of the system is a small quantity 

= ( A 1 - A l f ) / ( A I + A 2 )  = a T I A  ~ I 

By representing the natural logarithm in solution (3.4) in the form of a power series, which converges 
2 over the whole time interval, and dropping quantities of the order of g and higher, we can write the 

solution for the phase 

F(t)  = S o + m t + K t  2, ~ = ( a m - n ) l ( 2 A )  (3.5) 

Using expression (3.5) for the equatorial angular velocities we can write the following solutions 

p2(t) = mLosin((m + ~;t)t + So), q2(t) = o~L0cos((m + ~:t)t + So) (3.6) 

We will consider the case when body I rotates rapidly, body 2 is fixed with respect to the longitudinal 
axis (r0 = 0) and the modulus of the transverse angular velocity of the system is small compared with 
the characteristic angular velocity 

e = + q~llo~l = Ial = [L0[ ~ 1 (3.7) 

The angles of orientation 7 and gt will be assumed to be small (7 = O(e), ~ = O(a)). Then the nutation 
angle 0 (the angle between the O Z  and Ozi axes) are given by the following approximate formulae 

0 2 --~ ~ t2 + lt~ 2 (3.8) 

Taking relations (3.5), (3.7) and (3.8) into account, we can write kinematic equations (2.14) in the 
form 

= mLos in (F( t  ) + ~p), f¢ = mLocos (F( t  ) + q)), (p : -yO~Locos(F(t ) + cp) 
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In view of the above assumptions, the quantity q5 is of higher order of smallness than ~t and ~, and 
hence we can assume that, over a small time interval q0 = const = 0. Then, we can write for the angular 
velocities ~ and 

9, = "0Los inF( t ) ,  ~ = ¢OLocosF(t ) (3.9) 

We will consider two possible cases of the motion, which occur for the following relations between 
the quantities 

1) sign'0 = signn, 2) sign'0 =-sign~: (3.10) 

Assuming, to fix our ideas, that the value of the frequency co is positive, for both cases of (3.10), using 
Fresnel integrals, we can write the following analytic relations for the angles of orientation of the system 
(the upper plus and minus signs are taken for case 1, and the lower signs are taken for case 2) 

•(t) = + c~ [S()~(t)) - S0~(0))] + s~ [C()~(t)) - C()~(0))] + ~0 

q ( t )  = c~[C(~ . ( t ) )  - C(~.(0))] T - s ~ [ S ( t ( t ) )  - S(~.(0))] + ~0 

where 

c+_ = Rcos(s0_+_ 4~J'0z]' 

X 

C(x) = c o s  x , 

0 

I '°21 s_+ = Rsin s 0+~-~ , 

X 

S ( x )  = sin x dx  

o 

~,(t) = t + ~ e = L 0 I~1 

(C(x)  and S(x)  are Fresnel integrals). 

4. ANALYSIS OF T H E  A M P L I T U D E  OF N U T A T I O N A L  O S C I L L A T I O N S  
F O R  S M A L L  C H A N G E S  IN THE M O M E N T S  OF I N E R T I A  

We will consider the motion of a spacecraft, consisting of two coaxial bodies, one of which is a braking 
motor - body 1. Body 2 does not rotate (r0 = 0) and its mass is fixed, while body 1 is of variable mass 
which twists with respect to the second body (or 0 , 0). This arrangement can be used to slow down a 
spacecraft when it enters the atmosphere [1]. It is obvious that one must try to ensure that, during the 
braking process, the longitudinal axis of the system retains its position in space. We will obtain an estimate 
of the nutation angle at the braking stage. When r0 = 0 formula (3.5), takes the form 

a C  l - cA 
1¢ = to 2Cl-------- A-  (4.1) 

We will consider the case when the final changes in the values of the equatorial and longitudinal 
moments of body 1, referred to the overall equatorial moment of inertia of the system and to the initial 
longitudinal moment of inertia of body 1, respectively, are small: 

It = AA/A ~ 1, A c / C  1 "~ 1 (4.2) 

where AA = AI - A  if, A c  = C1 - Cl f  are positive finite changes in the values of the corresponding moments 
of inertia of body 1. Limitations (3.7), (3.8) and (4.2) correspond to the practical problem of slowing 
down a spacecraft using a motor (the duration T of the braking process does not exceed 30 s). 

We will introduce the instantaneous frequency 

aC l - cA 
ff2(t) = ¢o+~¢t = ¢0(1 +~(t)),  "c(t) = ~ t  

2 C I A  

Equations (3.9) then take the form 

= ¢OLosin(f2(t)t + So), ~ = ¢OLocos(f~(t)t  + s o) (4.3) 
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The greatest value in modulus of x(t) will be the small quantity 

aC l - c a  T = 1Aa Ac] suplx(t)l = ~ 2 a-C-'ll[ "~1 

We can obtain an approximate representation of the motion of the system [4] if we take x(t) as the 
parameter, assuming it to be equal to its mean value 

= 4~.A C l J  

In this case the approximate solutions of Eqs (4.3) have the form 

L o 
T(t) --- - ~-~-~[ cos (~ t  + So) - coss0] + TO 

L 0 
~(t)  = ~--~[ sin(~t + So) -sinso] + ~1/o 

f~ = co(1 +~) 

(4.4) 

The following relation for the time dependence of the nutation angle follows from expressions (3.8) 
and (4.4) 

0z(t) = 2L0 z 2L o . - 
( 1 + ~) 2[ 1 - cos(~t)]  + 1---~-~{ ~0(sm (f~t + So) - sins0) - 

2 2 2 
-T0(cos(~t  + So) - cOSSo) I + 0~, 0o = 70 + W0 

Averaging over the fast phase Z = ~ t  we obtain the following approximate formula 

where 

2L°2 2L° D + Oo 2 (4.5) 
(02) ( 1 + ~;)2 

2 
= V 0 c o s ( a  + So), 

To ~o cosa = s ina - ~ ' 2 2 

We will consider the special case when D = 0, which occurs when 70 = ~t0 (when ~ = n/4) and when 
P0 = q0 (when So = n/4), which can always be achieved by an appropriate choice of the systems of 
coordinates. It then follows from (4.5) that, to reduce the mean value of the nutation angle, it is necessary 
to increase the sum 1 + ~, which is equivalent to the following conditions 

> o, I~1 --) sup (4.6) 

The characteristic frequency o~ in this case has the following value 

co = -C l~o lA  (4.7) 

The first condition of (4.6) is equivalent to the inequality 

AA/A > Ac/C 1 (4.8) 

The second condition of (4.6) for a fixed value of the velocity of relative twisting of the bodies o0 and, 
as a consequence, for a fixed value of the characteristic frequency co (4.7), reduces to the condition for 
the modulus of ~ to increase and takes the form 

AAIA - Ac /C I --> sup (4.9) 
{A A, A C } 
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In Fig. 3 in the spatial variables {AA, Ac} we have represented the straight line 

A a = k A  o k = A / C  1 (4.1o) 

which defines the boundary, above which (the region D in Fig. 3) condition (4.8) is satisfied, and below 
which (the region N in Fig. 3) it is not satisfied. When considering the practical example of the braking 
of a spacecraft these region N and D represent a subset of sets of possible design parameters. These 
design parameters are the final changes in the moments of inertia of the braking motor {AA, Ac}, defining 
the form and internal arrangement of the fuel charges - the solid-fuel packets of the channel burner. 

The points {AA, Ac}, situated above the straight line (4.10) and furthest from it, satisfy condition 
(4.9). In Fig. 3 we show a set of points, corresponding to the regions of possible design parameters for 
a spacecraft, which are numbered in correspondence with the reduction in this distance; for example, 
point 1 has the greatest positive distance, while point 7 has the least negative distance. 
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The estimates obtained enable us, in practice, to make recommendations on the arrangement of the 
solid-fuel packets in the braking motor. It is important that the burn-up of the fuel should lead to changes 
in the moments of inertia for which, first, the point of the design parameters {AA, Ac} should be situated 
in region D and, second, should be furthest of all from the straight line (4.10). 

Calculations were carried out of the nutation angle using the complete equations of motion (2.14) 
and (2.15), taking relation (3.8) into account for certain points {AA, A c} from the discrete set of values 
(Fig. 3), which satisfy condition (4.2), for the same inertial-mass parameters and initial conditions of 
motion 

A 1 = A 2 = 2.5 kg m 2, C 1 = 0.9 kg m 2, C 2 = 0.3 kg m 2, Ill0 = Y0 = 0.1 rad 

r0 = 0 rad/s, ~0 = 20 rad/s, L0 = 1.1 rad/s, So = 0 rad, T = 25 s. 

The results, presented in Fig. 4, show that the least values of the nutation angle are reached for point 
1, while the greatest values are reached for point 7 from the space {AA, Ac}. The calculations confirm 
the correctness of the main analytical conclusions, formulated in the form of conditions (4.8) and (4.9). 

In conclusion, we note that the equations obtained and their approximate solutions may be useful 
when investigating the motion of other classes of spacecraft, representing a system of coaxial bodies 
of variable composition. 
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