
 

 
Abstract  This paper presents the study of behavior of the 

axial dual-spin spacecraft. The spacecraft is composed of two 
rigid bodies: an asymmetric platform and an axisymmetric 
rotor aligned with the platform principal axis. 
Such aircraft is often called gyrostat. The paper discusses 
three types of gyrostats: oblate, prolate and intermediate. The 
rotor can rotate freely relative of the platform and an internal 
angular momentum is equal to zero. We consider the dynamics 
of gyrostats in the absence of external torque. The dynamics is 
described by ordinary differential equations in the Andoyer-
Deprit canonical variables. The stationary solutions are found 
and studied their stability. Also we obtain general exact 
analytical solutions in terms of elliptic functions. These results 
can be interpreted as the development of the classical Euler 
case for a solid, when added to one degree of freedom - the 
relative rotation of bodies. Results of the study can be useful 
for the analysis of dynamics of dual-spin spacecrafts and for 
studying the chaotic behavior of the spacecrafts. 
 

Index Terms  Dual-spin spacecraft. Axial gyrostat. 
Andoyer-Deprit variables. Solutions in terms of elliptic 
functions  

I. INTRODUCTION 

HE dynamics of a rotating body is a classic topic of 
study in mechanics. In the eighteenth and nineteenth 

centuries, several aspects of the motion of a rotating rigid 
body were studied by famous mathematicians of all time as 
Euler, Cauchy, Jacobi, Poinsot, Lagrange and 
Kovalevskaya. However, the study of the dynamics of 
rotating bodies is still very important for numerous 
applications such as the dynamics of satellite-gyrostat and 
spacecraft.  A dual-spin spacecraft consists of an inertially 
fixed or slowly spinning platform connected to a rotor that 
spins relatively fast to provide attitude stability. The 
classical gyrostat model has a balanced axisymmetric rotor 
coupled to a platform that may be unbalanced or 
asymmetric. Both bodies are rigid and are connected by a 
rigid shaft about which relative spin may occur, driven by 
either a constant-speed.  Rumyantsev [2] developed 
Lyapunov's ideas arising from the theory of stability of the 
equilibrium figure of a rotating liquid contained within a 
gyrostat. The Lyapunov-Rumyantsev theorem is widely 
used in the design of artificial satellites and liquid-filled 
projectiles. In [2] introduced the Andoyer-Deprit canonical 
variables to establish the Hamiltonian structure of an 
asymmetric gyrostat in the gravitational field. Kinsey et al. 
[3] focused upon the capture dynamics of the precession 
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phase lock, a phenomenon that could prevent the successful 
despin of a dual-spin spacecraft by developing a control 
strategy that employed closed-loop feedback control of the 
motor torque when the system was near resonance. Hall [4] 
proposed a procedure based upon the global analysis of the 
rotational dynamics. Hall and Rand [5] considered spinup 
dynamics of classical axial gyrostat composed of an 
asymmetric platform and an axisymmetric rotor. They 
obtained averaged equations of motion for the slowly 
varying relative rotation of the bodies (disturbed motion) 
and the analytical solutions in terms of Jacobi’s elliptic 
functions for the projections of angular momentum in the 
case of constant relative rotation (undisturbed motion) . 
Aslanov [6] obtained explicit analytical time dependences of 
the Andoyer–Deprit variables corresponding to heteroclinic 
orbits for all the phase portrait forms of undisturbed motion 
of axial gyrostats. Although previous works provide insight 
into the behavior of the axial gyrostats, equations of motion 
have not been reduced to the system with one degree of 
freedom and were not found exact analytical solutions for 
the Andoyer-Deprit canonical variables for the undisturbed 
motion. Therefore, this paper presents the study of non-
linear dynamic behavior of the classical axial gyrostats with 
zero external torque in the undisturbed. We consider three 
types of the gyrostats classical [7]: oblate, prolate and 
intermediate.  

This paper is organized as follows. In Section 1, aim of 
this paper is formulated. In Section 2, the motion of the 
axial gyrostats as two rigid bodies connected by a rigid shaft 
is considered. The gyrostats dynamics is described by 
ordinary differential equations in the Andoyer-Deprit 
canonical. Section 3 gives the stationary position and their 
stability of the gyrostats. In Section 4, a bifurcation diagram 
and phase portraits are constructed for three types of 
gyrostats: oblate, prolate and intermediate. The main 
features of the phase space of the unperturbed system are 
defined. In Section 5, the general exact analytical solutions 
for the undisturbed motion of three types of the gyrostats are 
found in terms of Jacobi’s elliptic functions and elementary 
functions.   

II. EQUATIONS OF MOTION  

The gyrostat (P+R) consists of the balanced platform (P), 
axisymmetric rigid body and of the unbalanced rotor (R). 
The differential equations of the motion for the angular 
momentum variables of a rigid axial gyrostat with zero 
external torque may be written as [7]  

 2 31
2 3

2 3

I Idh
h h

dt I I


 , (1) 
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where ie are principal axes of P R  ( 1,2,3i  ), 

 1a S Sh I const     is  angular momentum of  R  

about 1e , 1 1 1 S Sh I I    is angular momentum of  

P R  about 1e , i i ih I   are angular momentums of  

P R  about ie  ( 2,3i  ), iI  are moments of inertia of 

P R  about ie  ( 1,2,3i  ), 1P SI I I   is moment of 

inertia of P  about 1e , SI  is moment of inertia of R  about 

1e , t  is time, i  are angular velocities of  P  about ie  

( 1,2,3i  ), S  is angular velocity of  R  about 1e  relative 

to P . 
Since there are external moments, angular momentum is 

conserved and first integral of the motion is  

 2 2 2
1 2 3G h h h const     (4) 

This first integral can be to reduce the number of 
equations (1) - (3) by one. However it gives complicated 
equations of the motion. The equations of motion can be 
simplified by using the canonical Andoyer-Deprit variables 
[8]: , , , , ,l g h L G H . In our case the first integral (4) directly 

is included in the Andoyer-Deprit variables. Using the 
change of variables  

 2 2 2 2
1 2 3, sin , cosh L h G L l h G L l     (5) 

we obtain the equations of motion in terms of Andoyer–
Deprit variables  

  1 1
( )cos 2

2a
P

l L h L a b b a l
I

        
 , (6) 

  2 21
( ) sin 2

2 P

L b a G L l
I

    (7) 

where /x dx dt , 2/Pa I I , 3/Pb I I . The body axes 

have been chosen so that 2 3I I (or equivalently b a ). 

The transformation of equations (6) – (7) to dimensionless 
form is obtained by scaling two momentum, time and axial 
torque as follows 

 
L

s
G

 , ah
d

G
 ,

p

G
t

I
   (8) 

Derivatives with respect to  are denoted by a derivative 

sign: /x dx d  . Carrying out change of variables (8) 
leads to the to the equivalent set of uncanonical 
dimensionless equations 

   ( )cos 2
2

H s
l s d a b b a l

s

          
, (9) 

  21
( ) 1 sin 2

2

H
s b a s l

l

     


 (10) 

where H  is a dimensionless Hamiltonian by 

 
   

2

2

1
, ( )cos2

4

2

s
H l s a b b a l

s
sd h const


      

   
 (11) 

Solving the expression (11) with respect to the cos 2l  we 
obtain an equation of the phase trajectory 

 
 

  

2

2

2 4 4
cos 2

1

a b s ds h a b
l

s b a

     


 
 (12) 

III. STATIONARY SOLUTIONS  

We define stationary solutions of equations (9) and (10). 
Equating to zero these equations leads to four stationary 
solutions. The first and second stationary solutions are 
described by, respectively 

  * *cos 2 1,
1

d
l s

b
 


, (13) 

  * *cos 2 1,
1

d
l s

a
  


 (14)  

The third and fourth stationary solutions correspond to 

the cases when axis of rotation gyrostat 1e  coincides with 

the angular momentum, or takes the opposite direction 

  * *

2 2
cos 2 , 1

a b d
l s

b a

  
 


 (15) 

  * *

2 2
cos 2 , 1

a b d
l s

b a

  
  


 (16) 

We will perform the standard procedure of linearization 
(9) and (10) in the vicinity of a stationary 

position * *,l l l s s s      , then a characteristic 

equation can be written as 

 

2 2

2

2 2

2

0

H H

s l s

H H

l l s





 


   
 

  
  

 (17) 

This characteristic equation for first stationary solution 
(13) becomes 

    2 21 1 0b a b s       

The equilibrium position (13) is obviously stable if 

 1b  ,  3PI I  (18) 

and unstable if  

 1b  ,  3PI I  (19) 

For the second stationary solution (14), the characteristic 
equation (17) can be written as 

    2 21 1 0b a a s       

then the second stationary solution (19) will be stable if 

 1a  ,  2PI I  (20) 

and unstable for 

 1a  ,  2PI I  (21) 

Thus, the equilibrium position * ,l n n  is stable, if 

the moment of inertia of the platform PI  greater than the 
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smaller moments of inertia of gyrostat 2I  and unstable, if 

PI  less than 2I . The equilibrium position 

* / 2 ,l n n   is stable if the moment of inertia of 

the platform is less than the larger of the transverse 
moments of inertia gyrostat and unstable if more than that 
moment of inertia. 

For the third and fourth stationary solutions (15) and (16), 
the characteristic equation (17) can be written as 

    22 21 cos 2 0b a l      

This equation has only real roots, so the third and fourth 
stationary solutions (15) and (16) are unstable. 

IV. BIFURCATION DIAGRAM  

An axial gyrostat is oblate if 2pI I  or equivalently 

1b a  ; it is prolate if 3pI I  or if 1a b  ; and it is 

intermediate if 3 2pI I I   or if 1b a  . We have three 

areas on the bifurcation diagram, which correspond to 
stationary solutions of (13) - (16) and the conditions that 
determine stability or instability of (18) - (21) as shown in 
Fig. 1: 

1) oblate gyrostat 

centers:  , ; / 1c cl n n s d b     (22) 

saddles:  / 2 , ; / 1s sl n n s d a       (23) 

2) prolate gyrostat 

saddles:  , ; / 1s sl n n s d b     (24) 

centers  / 2 , ; / 1c cl n n s d a       (25) 

3) intermediate gyrostat 

centers:  , ; / 1c cl n n s d b     (26) 

centers:  / 2 , ; / 1c cl n n s d a       (27) 

saddles: 
1 2 2

arccos ; 1
2s s

a b d
l s

b a

  
   


  (28) 

saddles: 
1 2 2

arccos ; 1
2s s

a b d
l s

b a

  
  


 (29) 

 
Fig. 1. The bifurcation diagram. 

Examples of phase trajectories for the oblate gyrostat and 
the prolate gyrostat are shown in ,s l  coordinates in Figs. 2-

3. 

 
Fig. 2. Phase trajectory for the oblate gyrostat: 

2

2
2.1I kg m , 

2

3
1.6I kg m , 

22.5
p

I kg m , 0.15d   , 

 0.267, 0.788
c s

s s   

 
Fig. 3. Phase trajectory for the prolate gyrostat: 

2

2
2.0I kg m , 

2

3
1.6I kg m , 

21.4
p

I kg m , 0.05d   0.4, 0.167
s c

s s  . 

In Fig. 4 (for the area 3 on bifurcation diagram), there are 
two types of separatrix, one of which contains saddles (28) 
and another   saddles (29). In the phase space bounded by 
these separatrices, there is continuous motion with 
sequential change in the sign of dimensionless momentum 
s . 

 
Fig. 4. Phase trajectory for the intermediate gyrostat: 

2

2
2.0I kg m , 
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2

3
1.6I kg m , 

21.8
p

I kg m , 0.05d  , 

    0.4 0 , 0.5 / 2, / 2
c c c c

s l s l        

V. INTEGRATION BY QUADRATURE THE EQUATIONS OF 

UNDISTURBED MOTION  

A. Separation of variables 

By deleting the coordinate l from the equation (10) and 
making use of equation (12), we obtain the new form 

  
  

2
2

22

1
1

2

2 4 4 ( )

s s b a

a b s ds h a b F s

      

          

 (30) 

where 

 ( ) 4 ( ) ( )a bF s f s f s   (31) 

   21
( ) 1

2 2
f s s ds h

     ,  ,a b   (32) 

Separating the variables in the equation (35) and 
integrating it we obtain 

 
( )

ds
const

F s
      (33) 

In a general case, this integral is an elliptic integral. 
Transform the integral to the Legendre normal form [10] 
depends on the type and location of the roots of the fourth-
degree polynomial (31) as the product of two polynomials 
of second degree (32). We represent the roots of the 
quadratic equations 

 ( ) 0f s   ,a b    

as 

 1,2 1

d D
s









,   2 2 1D d h       (34) 

B. Analytical solutions for the oblate gyrostat 

The type of the roots (34) of the polynomial (31) depend 
on the value of the constant h . For different types of the 

motion of the oblate gyrostat  1b a  h  corresponds to 

the following condition 

 c L s Rh h h h    (35) 

where Lh and Rh  are correspond respectively  to libration 

and rotation. The constant h  in the center (22) - ch   and in 

the saddle (23) - sh  is 

 
21

2 1c

d
h b

b

 
   

, 
21

2 1s

d
h a

a

 
   

 (36) 

We have libration’s solution if an arbitrary constant 

Lh h  satisfy condition (35), and then the phase trajectory 

belongs to the closed area (Fig. 2), which includes the center 
(22). The roots of the polynomial (31) with (34) are given 
by 

   2
1,2 1,2 , 2 1 0

1
bb

b L

d D
s s D d h b b

b
      




 

  
3,4 1,2

2

, ,
1

2 1 0

aa
s k k

a L

D
s s s is s

a

D d h a a


   


    

 

Two real roots 1 2s s  and two complex conjugate roots 

3,4 s ks s is   take place because the integral (38) can be 

written as 

 
    2

1 2 3 4

s

s

ds

s s s s s s s s
 

     (37) 

Change of variable [9]  

 
2

1 1

2 2

cos
tan

2 cos

s s

s s




     
 (38) 

converts the integral (37) to the Legendre normal form  

 
2 21 sin

d

k











   

where  

1
1tan s

k

s s

s



 , 2

2tan s

k

s s

s



  ( 1 , 2  are acute 

angles),  

 



 , 1 2sin sin

2
k

 
 , 

 1/2

1 2cos cos

ks

 
    

We proceed to study the rotation when Rh h  in the 

condition (35). The four real roots of the equation ( ) 0F s   

take place: two roots  2 1s s s  correspond to the upper 

phase trajectories and two roots  4 3s s s   the lower 

phase trajectories as shown in Fig.2. 

   2
3,2 1,2 , 2 1 0

1
aa

a R

d D
s s D d h a a

a


      


 

   2
4,1 1,2 , 2 1 0

1
bb

b R

d D
s s D d h b b

b


      


 

Since a bD D then the real roots are as follows 

 4 3 2 11 1s s s s       (39) 

In this case the integral (38) has the form 

 
    1 2 3 4

i

s

s

ds

s s s s s s s s
 

     (40) 

where index of the lower limit of the integral 2i   for the 
upper phase trajectories and 4i   for the lower phase 
trajectories. By a change of variables [9] the integral (40) 
can be reduced to the Legendre normal integral  

 
0 2 21 sin

d

k

 





  (41)  

Then the general solutions can be written for the upper 

area  2 1s s s   

 
 

 

2
2 31 3 21

2
31 21

,

,

s s s s sn k
s

s s sn k


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



 (42) 

and for the low area  4 3s s s   
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 

 

2
4 31 1 43

2
31 41

,

,

s s s s sn k
s

s s sn k


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



 (43) 

where  ,sn k is elliptic sine  

 



 , 

  
  

3 4 2 12

3 1 2 4

s s s s
k

s s s s

 


 
,   1/2

31 242 s s  , ij j is s s   

C. Analytical solutions for the prolate gyrostat  

The saddles and the centers are located at the points (24), 

(25) for the prolate gyrostat  1a b  and the constant h  

satisfies the following condition for different types of 
motion 

 0 c L s Rh h h h     (44) 

where  

 
21

2 1c

d
h a

a

 
   

,
21

2 1s

d
h b

b

 
   

 (45) 

There is a libration, when arbitrary constant Lh h  

satisfies to condition (44). The roots (34) of polynomial (31) 
are written by 
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1,2 1,2 , 2 1 0

1
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d D
s s D d h a a

a


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b L

D
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b

D d h b b


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
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From this is clear that desired solutions coincide with the 
solutions (38). 

In the case of rotation of the prolate gyrostat there are 
four real roots (34) 
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1,4 1,2 , 2 1 0

1
aa

a R

d D
s s D d h a a

a


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d D
s s D d h b b

b


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The location of these real roots 

 4 3 2 11 1s s s s       

coincide with the  location of the roots  (39). Therefore, in 
this case the general solutions are the solutions (42) and 
(43). 

D. Analytical solutions for the intermediate gyrostat 

The moments of inertia of the intermediate gyrostat 
determined by the following relation 3 2pI I I  , 

 1b a  . In this case we have two groups of areas of 

librations, when the phase trajectories are closed: 0-areas, 
which includes centers (26), and 1-areas containing centers 
(27). These areas correspond to values of the arbitrary 

constant of the Hamiltonian 0Lh и 1Lh . As shown in Fig. 4 

the phase portrait has a single area of rotations and opened 

trajectories, in which Rh h . The constant h  for the 

different types of motion corresponds to the following 

condition: 

 1 1 1 0 0 00 c L s R s L ch h h h h h h        (46) 

where 0ch and 0sh correspond respectively to the centers 

(26) and the saddles (28) 
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1ch  and 1sh correspond to the centers (27) and the saddles 

(29) 
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For the librations in the 0-areas ( 0Lh h ), which includes 

centers (26), we have the following roots of the polynomial 
(31) 
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where   2
0 02 1 0a LD d h a a     , and  

 0
3,2 1,2 1

bb d D
s s

b


 


 (50) 

where   2
0 02 1 0b LD d h b b     . 

For the 1-areas ( 1Lh h ), which includes centers (27), 

the roots of the polynomial (31) are 

 1
4,3 1,2 1

aa d D
s s

a


 


 (51) 

  2
1 12 1 0a LD d h a a     , 

 1
2,1 1,2 1

bb d D
s s

b


 


 (52) 

  2
1 12 1 0b LD d h b b     . 

The numbering of the roots of (49) - (52) corresponds to 
the following sequence 

 4 3 2 11 1s s s s       (53) 

Physical motion is realized in the range  3 2,s s s . In 

this case the integral (33) becomes 
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where     /A C C B A B       .  

The elliptic integral (54) reduces to the Legendre normal 
form (41) with the following change of variables [9] 
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31 422 s s  , ij j is s s   

Then the general solutions can be written as  

Proceedings of the World Congress on Engineering 2011 Vol I 
WCE 2011, July 6 - 8, 2011, London, U.K.

ISBN: 978-988-18210-6-5 
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

WCE 2011



 

 
 

 

2
3 42 4 32

2
42 32

,

,

s s s s sn k
s

s s sn k








 (55) 

We consider the area of rotation (Fig. 5), bounded by 0- 
and 1-separatrices. Range of variation of arbitrary constant 

 1 0,R s sh h h or, according to (47) and (48) 

 
1 1
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Then the four roots (34) have the form  

 4,3 1,2 1
aa d D

s s
a


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 (56) 

where   2 2 1 0a RD d h a a      

 2,1 1,2 1
bb d D

s s
b


 


 (57) 

where   2 2 1 0b RD d h b b     . 

Physical motion is realized in the range  3 2,s s s . The 

location of the roots (56) and (57) corresponds to (53), 
therefore the solution (55) describes also the rotation of the 
intermediate gyrostat. 

VI. CONCLUSION 

We have shown that the equations of motion for the axial 
gyrostats can be reduced to two first-order ordinary 
differential equations for the Andoyer-Deprit canonical 
variables. The stationary solutions are found and studied 
their stability. Also we obtain the general exact analytical 
solutions in terms of elliptic functions. Note that an 
analytical description of the motion along the separatrix is 
easily obtained. It's enough to substitute 

   ,1 tanhsn u u  in the founded solutions for the 

libration or the rotation. These results can be interpreted as 
the development of the classical Euler case for a solid, when 
added one degree of freedom - the relative rotation of 
bodies. Results of the study can be useful for the analysis of 
dynamics of dual-spin spacecraft and for studying the 
chaotic behavior of the spacecrafts. 
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