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1. FORMULATION OF THE PROBLEM

In order to impart to the braking thrust vector of a
spacecraft, descending in the atmosphere, a specified
direction, the vehicle is stabilized in space by spinning
around the longitudinal axis. The retrorocket engine
(RRE) operation lasts about 20 seconds, during which
the inertial-mass characteristics of the spacecraft
change because of fuel burning out. The initial angular
disturbances result in occurrence, on a powered section,
of nutation oscillations of the spacecraft’s longitudinal
axis with variable amplitude. The deviations of the lon-
gitudinal axis, and, hence, of a thrust vector cause
spacecraft transition to a descending orbit that differs
from calculated one, and, hence, to an increase of the
area of scattering of landing points.

The problem is stated to obtain simple approximate
analytical solutions for the angles of spatial orientation
of spacecraft, which would allow one to analyze the
motion and to develop recommendations on the vehi-
cle’s mass configuration ensuring the least deviations of
a longitudinal axis from the specified direction, and,
hence, the least scattering of landing points. The spatial
motion of a vehicle around its center of mass deter-
mines the motion of its longitudinal axis too, and,
hence, the direction of a braking thrust vector. The effi-
ciency of gyroscopic stabilization is determined by the
value of deviation of the final velocity of the space-
craft’s center of mass from the nominal value on the
powered section. As a rule, in problems of descent the
braking impulse is supposed to be instantaneous, and
its direction is considered to be constant [1]. However,
under real conditions the direction of a braking thrust
vector changes owing to nutation-precession motion
during RRE operation.

It should be noted that the above-mentioned prob-
lem was considered earlier in a number of works, for
example, in monograph [2]. However, in these works
the solutions for kinematical parameters of spatial and
trajectory motions of spacecraft on the powered section
of descent trajectory were not presented in the explicit
form. In the present paper, integration in quadratures of
corresponding dynamic equations is performed, and the
analytical solutions to indicated kinematical parame-
ters are found.

It was stated in paper [3] that after terminating RRE
operation the ratio of the transverse velocity magnitude
to the total velocity magnitude should not exceed some
specified value:
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, characterizing the angular error in
applying the braking impulse, can be obtained either by
numerical integration of corresponding equations of
motion of the center of mass, for example, [3], simulta-
neously with the equations of motion with respect to the
center of mass or with using the analytical solutions.

2. EQUATIONS OF MOTION OF A BODY 
OF VARIABLE COMPOSITION

In describing the motion of a body of variable com-
position we make use of the “short-range effect”
hypothesis [4, 5], according to which the particles are
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thrown away only from some part of the surface of a
variable-mass body, and the particles not possessing
relative velocity with respect to the body-fixed coordi-
nate system are considered as belonging to the body.
The particles possessing such a relative velocity do not
belong to a body any longer and have no effect on its
motion. We write the equations of motion in the 

 

Oxyz

 

coordinate system, which is rigidly fixed to a spacecraft
and has its origin at point 

 

é

 

 coinciding with the initial
position of the center of mass. We note that in the pro-
cess of fuel burning out in RRE the position of the
spacecraft’s center of mass relative to the spacecraft
changes. We introduce the following coordinate sys-
tems: 

 

OXYZ

 

 is a movable and, in the general case, non-
inertial coordinate system, whose axes remain collinear
with the axes of some inertial system; 

 

Oxyz

 

 is the
spacecraft-fixed coordinate system, axis 

 

Oz

 

 is directed
along the longitudinal axis of the vehicle, in the direc-
tion of which the braking thrust 

 

ê

 

 is applied. We
assume that the vehicle possesses axial dynamic sym-
metry which is not violated during mass changing, and
the body’s center of mass moves along the axis of sym-
metry 

 

Oz

 

.

The dynamic equations of motion of a dynamically
symmetric body of variable composition can be
obtained from the dynamic equations of motion of a
system of two coaxial bodies [3, 7] by letting the
moments of inertia of one body to be zero:
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 are the equatorial and lon-
gitudinal moments of inertia of a body, calculated in the
body-fixed coordinate system 

 

Oxyz
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is the dis-
tance between the body’s center of mass and the origin
of the coordinate system 

 

Oxyz
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 are pro-
jections of the principal moment of external forces onto
the body-fixed axes. Equations (2.1) coincide with
well-known equations of motion of a solid body of vari-
able mass [4–6] with invariable position of the body’s
center of mass 

 

ρ

 

C

 

 = 0.

Since the spacecraft size is small as compared to the
radius of orbit, the moment from the gravitational force
can be disregarded. We consider the process of sym-
metric burning out of fuel in RRE, when the throwing
points away occurs strictly in the longitudinal axis
direction, and the center of mass is only insignificantly

displaced from its initial position: 
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. There
will be no moment of jet force relative to the center of
mass in this case. By virtue of accepted assumptions,
we re-write the dynamic equations (2.1) in the follow-
ing form:

 

(2.2)
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where
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We make use of the Euler-type angles 

 

ψ

 

 

 

 γ

 

  

 

ϕ

 

as the angles determining the position of a body-fixed
coordinate system 

 

Oxyz

 

 relative to the 

 

OXYZ

 

 system
(see Fig. 1). The last turn by angle 

 

ϕ

 

 is made around the
axis of the vehicle’s dynamic symmetry, 

 

Oz

 

. Such a
choice will subsequently allow us to obtain the required
approximate solutions, including those for the nutation
angle.

The kinematical equations for the introduced angles
of spatial orientation have the form:

 

(2.4)

 

We determine the nutation angle 

 

θ

 

 as an angle between
axis 

 

OZ

 

 and the axis of vehicle’s dynamic symmetry

 

Oz

 

. Then it follows from the spherical geometry, that
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Note that for small values of the nutation angle (and,
hence, of angles 

 

ψ

 

 and 

 

γ

 

) formula (2.5) is re-written in
the form:
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3. APPROXIMATE SOLUTIONS

Let the mass, and longitudinal and transverse
moments of inertia of a vehicle vary according to the
linear law during the retrorocket engine operation,
which is valid with sufficiently high accuracy for solid-
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propellant engines used as RRU, with fuel charges of
star-shaped cross section and packet-grain charges,
provided that they are burned out uniformly:

(3.1)

where A0 and C0 are the initial values of corresponding
moments of inertia; and a, c > 0.

We take advantage of the procedure of writing the
equations of angular motion at small nutation angles in
the complex form, which was used in a number of
papers, for example, in [5]. We introduce the following
complex variable:

(3.2)

whose real and imaginary parts represent the first two
angles from the sequence of rotations (Fig.1), where,
on the strength of (2.6), |Θ| = θ, i.e., the modulus of a
complex variable characterizes the nutation angle
value. For small nutation angles the real and imaginary
parts of variable Θ describe the motion of the projection
of the apex of spacecraft’s longitudinal axis Oz along
the motionless coordinate plane XéY. Omitting auxil-
iary derivations of the mentioned procedure, whose
detailed description can be found in paper [5], one can
easily reduce the first two equations of (2.2) to the fol-
lowing complex equation:

(3.3)

From Eq. (3.3) one can obtain the following rela-
tionship for the complex angular velocity:

(3.4)

where

(3.5)

Separating the real and imaginary parts of solution
(3.4), we write the expressions for angular velocities as:

(3.6)

where G =  sinF0 = /G, and cosF0 = /G.
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To simplify further calculations, we expand the log-
arithm in integral (3.5) into the power-law series,
whose interval of convergence is t ∈ [0, A0/a]):

(3.7)

For the considered class of spacecraft the quantity ξ
during RRE operation does not exceed a value of 0.2.
Therefore, rejecting in the expansion the terms contain-
ing ξ of the third and higher powers and letting F0 = 0,
we obtain the following approximate equations for the
angles of spatial orientation:

(3.8)

where

(3.9)

For a complex angular velocity the following equation
is valid:

(3.10)

from which it follows that further integration in com-
plex form seems to be inexpedient, since it results in a
formalized form of solution in special functions of
complex variable. Proceeding from this circumstance,
we carry out further transformations on the basis of sep-
arated equations (3.8).

In virtue of spacecraft design features, µ and λ
parameters can take either identical or opposite signs,
which, accordingly, depends on validity or invalidity of
the following condition:

(3.11)

In the general case, when any combination of signs of
µ and λ is possible, the integrals of equations (3.8), with
regard to expressions (3.9), are written in the following
form:
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where the upper sign is taken for the case, when condi-
tion (3.11) is met, and the lower sign, on the contrary,
in the case, when it is not met.
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After integrating (3.12) the solutions are written in
the Fresnel’s integrals:

(3.13)

where C(x) =  and S(x) = 

are Fresnel’s integrals, and Γ and Ψ are constants of inte-
gration.

Now we make use of the following series expansion
of the Fresnel’s integrals [8]:

(3.14)

Replacing in solution (3.13) Fresnel’s integrals by
their representations (3.14), rejecting here the quanti-
ties of the order of O(πµ(µt + λ/2)–2), we write down:

(3.15)

Note that in the case, when Λ = 0, quantity µ = 0,
and equations (3.12) have the exact solutions:

for which the constant amplitude and frequency of
oscillations are characteristic.
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Substituting these solutions into expression for the
nutation angle value (2.6) and making averaging, we
write:

(3.16)

As is seen from expression (3.16), where the upper
sign and lower sign correspond to validity or invalidity
of condition (3.11), the average value of nutation angle
will monotonously decrease beginning from a zero time
instant in the case, when the quantity (t ± |λ/(2µ)|)2

monotonously increases. Thus, the monotonous
decrease of average values of the nutation angle will
occur in the case of coincidence of the signs of µ and λ
quantities, when condition (3.11) is met. In the case of
non-coincidence of signs of µ and λ the average values
of the nutation angle will increase beginning from a
zero time instant until the instant T∗ = |λ/(2µ)|, at which,
as our approximate calculations have shown, the nuta-
tion angle value grows without limit.

From solutions (3.15) one can easily find the aver-
age values for angles ψ and γ, and the envelopes for the
nutation angle:

(3.17)

Figure 2 presents the results for nutation angle (2.5)
obtained by means of numerical integration of relations
(3.8), as well as its averaged (3.16) value (curves 1, 2)
and envelopes (3.17). Curve 1 (Fig. 2) corresponds

to coincidence of the signs of λ and µ quantities, and
curve 2 to their distinction. The initial data and param-
eters of a system for two calculations are presented in
Table 1.

Thus, the value of the nutation angle will decrease at
fulfillment of condition (3.11), which corresponds to
such nutation-precession motion of spacecraft, when
the braking impulse accuracy increases spontaneously,
and, hence, the area of landing points scattering
decreases. The growth of the nutation angle results in
“spraying” of the braking impulse and in increasing
errors of transition to the calculated orbit of descent.

4. MOTION OF THE CENTER OF MASS 
AND CALCULATION OF ERRORS OF APPLYING 

THE BRAKING IMPULSE

The solutions for the angles of spatial orientation
(3.13), (3.15), and (3.16), obtained above, allow one to
get analytical estimates of the efficiency of gyroscopic
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stabilization of the longitudinal axis, expressed by inte-
grated criterion (1.1).

The linear law of mass variation

(4.1)

corresponds to the constant magnitude of jet thrust
force.

Now we write the equations of motion of the space-
craft’s center of mass in projections onto the axes of the
é1ξηζ system (Fig. 3) with regard to spatial motion of
the spacecraft in the OXYZ system at small angles:

(4.2)

where Vξ =  Vη =  and Vζ =  are the components
of the velocity of the center of mass. Note, that in
Eqs. (4.2) we have neglected the so-called gravitational
losses [10], which, if necessary, can be calculated by
separate integration and added as an additive quantity
[3]. Thus, Eqs. (4.2) describe the motion of the space-
craft’s center of mass on the powered section only
under the action of a constant jet thrust ê.

For calculating the stabilization errors è(t) (1.1) the
equations of motion (4.2), (2.2), and (2.4) are numeri-
cally integrated [3]. As an alternative to numerical inte-

m t( ) m0 1 νt–( ), ν m0 mk–( )/ m0T( ).= =

m t( )V̇ξ Pγ , m t( )V̇η– Pψ,= =

m t( )V̇ζ P,–=

ξ̇, η̇, ζ̇

gration, quantity è(t) can be determined analytically
by substituting into equations of motion (4.2) the aver-
aged dependences for spatial angles  and :

(4.3)

which follow from solutions (3.15) when condition
(3.11) is met. With regard to (4.3) the solutions of equa-
tions (4.2) have the form:

(4.4)

where

Then the value of a final stabilization error (1.1) is
determined by the formula:

(4.5)

For the comparative analysis and estimation of the
efficiency of obtained analytical formulas, the error
è(t) has been calculated in three ways (Fig. 4). The
thick oscillatory line corresponds to the results
obtained by means of simultaneous numerical integra-
tion of differential equations (4.2), (2.2), and (2.4); the
thin oscillatory line represents the results obtained by
numerical integration of analytical expressions (3.12)
and (4.2), while the horizontal line corresponds to the
final error è calculated by formula (4.5).

The calculations were carried out for the parameters
indicated in the table (the line of coincidence of the
signs of λ and µ implies fulfillment of (3.11)), and the
initial values of the velocity of the center of mass had
zero values, since the inertial coordinate system é1ξηζ
moved by itself with orbital velocity for the instant of
the powered section beginning. It is seen from the fig-
ure that all ways of calculating the error è give the
same result near the final instant of RRE operation
time.

γ ψ
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--- γ max t( ) γ min t( )+[ ],=
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2
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Fig. 2. Behavior of the nutation angle at coincidence (1) and
distinction (2) of the signs of λ and µ quantities.

Table

Spacecraft parameters 
and initial conditions 

of motion

r0, 
rad/s

G, 
rad/s

C0, 
kg m2

A0, 
kg m2

c, 
kg m2/s

a, 
kg m2/s

γ0, 
rad

λ, 
rad/s

µ, 
rad/s2

Λ, 
(kgm2)2/s

Signs of λ and µ quan-
tities coincide

10 0.1 10 20 0.1 0.5 0.1 –5 –0.04 –3

Signs of λ and µ quan-
tities are opposite

10 0.1 10 20 0.4 0.6 0.1 –5 0.03 2
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In conclusion, it should be noted that condition
(3.11) should be considered as a criterion for choosing
the “optimum” combinations of inertial-mass parame-
ters of a spacecraft. For example, condition (3.11) can
be written in the form:

(4.6)

where, according to laws (3.1), quantities ‡ and Ò can be
represented as follows:

With regard to the last formulas relation (4.6) is
reduced to the form:

(4.7)

where quantities ∆Ä and ∆C represent the final changes
of transverse and longitudinal moments of inertia of the
spacecraft, respectively. Relation (4.7) indicates that, in
order to decrease the amplitude of nutation oscillations
and to increase stabilization efficiency, it is necessary to
provide for such internal configuration of the space-
craft, at which the relative change of the longitudinal
moment of inertia is less than the relative change of the
transverse moment of inertia. This can be achieved, for
example, by disposing solid-propellant charges as close
to the spacecraft’s longitudinal axis, as possible. From
the viewpoint of increasing the efficiency of gyroscopic
stabilization of a spacecraft on the powered section, the
arrangement of a package of solid-propellant charges in
RRE’s combustion chamber in the form of a “rod” is
more expedient, than its arrangement in the form of a
“washer.” Other variants of the internal RRE configura-
tion that provide for fulfillment of condition (4.9) are
also possible. The suggested techniques of estimating
the efficiency of gyroscopic stabilization are quite
applicable both for analyzing the quality of dynamic
processes in spacecraft motion on a powered section

c
C0
------ a

A0
------,<

a
A0 Ak–

T
-----------------

∆A

T
------, c

C0 Ck–
T

------------------
∆C

T
------.= == =

∆C

C0
------

∆A

A0
------,<

and for synthesizing the internal configuration of a
spacecraft.
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