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Abstract

Multibody systems with changing structure are considered. These systems have
stages in their motion that distinct from each other by degree of freedom (DOF),
joint connection structure and joint types. These mechanical systems are common
in space application e.g. separation subsystems. Single coordinate set is used to
formulate Newton-Euler equations of motion at each stage. Proposed equation form
simplifies equations building process for certain stages and whole motion. Numerical
experiment was carried out using proposed method.
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1 Introduction

Some aerospace systems belong to a system with changing structure [1], [2],
[3], [4], [5]. It’s possible to split their motion to stages or steps that distinct
each other by the equation of motion. Transition from one stage to another
occurs instantaneously. System structure, degrees of freedom, forces set are
changed from stage to stage. Equations of motion of that complex multibody
systems should be appropriate for building computational model. Many of
the most efficient algorithms in multibody dynamics has developed over the
last 30 years for robot applications [6], [7]. In [8] Featherstone reviews some
of the accomplishments in the field of robot dynamics research (see also [9,
chap. 5,6,7]). Santini and Gasbarri at [10] review some multibody dynamics
algorithms for space applications.

Equations of motion can be written using two types of coordinates: relative
coordinates that represent position and velocity of the body in terms of rel-
ative motion between interconnected bodies (joint coordinates) or absolute
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coordinates, i.e Cartesian. The choice of the coordinates is related to formula-
tion of the dynamics of mechanical systems [11, chap. 1.2]. One of the effective
method that uses joint coordinates is proposed in [12] by J. Wittenburg. Ma-
trix equations are formed with no necessity to do any symbolical operations
(e.g. symbolic differentiation). Minimal set of variables produce minimal set of
equations without constraint forces. This method is appropriate for computer-
aided analysis of mechanical systems. In the other hand we can choose absolute
coordinates of bodies and write Newton-Euler equations for each body (see
[11, chap. 1.2.3]), that leads to maximum number of equations. Obtained dif-
ferential equation system must be solved with algebraic constraints equations.

Each of two methods can be used to build equations of motion for the con-
sidered mechanical systems. But we should take into account variations in
system structure. Using first method we should build equations for each stage
and coordinates set are different for each stage. It is necessary to do trans-
form of coordinates during stage transition. These operations complicate our
model. Second approach that used Newton-Euler equations allows to use the
single coordinates set for all stages that simplify model building process.
Structure change is described by including or excluding constraints equations.
Constraints equations depend on joints that connect bodies. Newton-Euler
equations with constraints equations forms DAE system [11]. Newton-Euler
method leads to large set of equations but these equations have simple struc-
ture than equations obtained using relative (joint) coordinates. Also for open-
loop systems several algorithm can be used to speed up calculation process
(for example see Baraff [13] and Featherstone [14]). Our approach for mechan-
ical systems with changing structures is based on Newton-Euler equations.
Newton-Euler equations are solved with constraint equations that are built
using two simple constraints. This two constraints allow simulate wide range
of joints.

The rest of the paper is organized as follows: Section 2 defines the problem. In
section 3 we describe two simple constraints and write down two constraints
equations. In sections 4-5 we describe some numerical experiments to illustrate
possibility of practical use of the offered equations form.

2 Statement of the problem

As we’ve noticed before Newton-Euler equation form is preferable for systems
with changing structure: this equations are immutable from one motion phase
to another and we need to change constraint equations only. DAE system for
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multibody dynamics can be written as [9, chap. 3.2]:

M QT

Q 0


 q̈

−λ

 =

F

b

 , (1)

here q is coordinates column matrix; M - is a generalized inertia matrix; Q -
coefficients matrix of constraints equations, that can be written as:

Qq̈ = b.

Generalized inertia matrix M depends on q. Q matrix depends on q and q̇.
Complexity of these matrices depends on coordinates that used to describe
bodies position and orientation. General inertia matrix has simplest structure
for Newton-Euler equations (constant block-diagonal matrix). In this case,
changing in the structure of the multibody system does not affect the structure
of inertia matrix. Matrix Q depends of joints that connect bodies of mechanical
systems [9]. The structure of this matrix and/or it size are changed with
changes in system structure.

The method proposed here use two simple matrix constraint equations that
enable us to write constraint equation for commonly used joints in mechanical
systems for space application.

Newton-Euler equations for free rigid body are written as [15, chap. 7.11]:

m 0

0 J(c)


 r̈(0)

ω̇(c)

 =

F(0)

L(c)

+

 0

−ω̃(c)J(c)ω(c)

 (2)

m - diagonal mass matrix; J(c) - central inertia tensor; r̈(0) - column of Carte-
sian coordinates relative to inertial frame; F(0) - resultant force vector in in-
ertial frame; L(c) - resultant moment of the force system acting on the body;
ω̃(c) - angular velocity tensor:

ω̃(c) =


0 −ω(c)

z ω(c)
y

ω(c)
z 0 −ω(c)

x

−ω(c)
y ω(c)

x 0

 .

We will always use trailing superscript between parentheses to indicate frames
in which vector or tensor coordinates are written.

For body in constrained multibody system reaction forces R(0) and reaction
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torques must be added to right side of (2):

m 0

0 J(c)


 r̈(0)

ω̇(c)

 =

F(0) + R
(0)
λ

L(c) + L
(c)
R

+

 0

ω̃(c)J(c)ω(c)

 (3)

Constraints equations should be solved with (3) to find reaction forces and

torques R(0), L
(c)
R .

3 Constraint equations

Let us consider two simple constraints equations: “point on plane” and “rela-
tive rotation constraint“. Constraint equations will be formulated in terms of
accelerations for simultaneous solution of these equations with Newton-Euler
equations.

3.1 Point on plane constraint

We suppose that contact point trajectory can be plane curve, straight line
or contact point keeps position relative to ones body frame. This equation
constraints relative linear motion of two bodies. Contact point fixed on the
one body moves on plane that is fixed on other body.

Let us write “point on plane” constraint equation as scalar product of two
vectors (fig. 1):

~ni · ~ari = 0, (4)

~ari– is a contact point acceleration relative to frame i that based on body i; ~ni –

Figure 1. For “point on plane” equation
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is a unit vector perpendicular to the plane based on body i. All time contact
point must be on this plane. In matrix form equation (1) can be written as:

(ρ̈
(i)
i )Tn

(i)
i = 0, (5)

ρ̈
(i)
i - acceleration vector coordinates in the body i coordinate frame. This

column matrix can be expressed using center of mass vectors. Firstly let us
write ρ

(i)
i as:

ρ
(i)
i = AiTρ

(0)
i , (6)

here ρ
(0)
i – is a column vector ~ρi in the ground frame Ooxoyozo; Ai - transfor-

mation matrix of the vector coordinates in frame Oixiyizi into coordinates in
frame Ooxoyozo. After differentiating (6) we have:

ρ̇
(i)
i = ȦiTρ

(0)
i + AiT ρ̇

(0)
i . (7)

And taking into account that [12]:

ȦiT = −ω̃(i)
i AiT , Ȧi = Aiω̃

(i)
i , (8)

we get:

ρ̇
(i)
i = −ω̃(i)

i AiTρ
(0)
i + AiT ρ̇

(0)
i . (9)

Contact point vector ~ρi is expressed as sum of two center of mass vectors ~ri, ~rj
and contact point vector ~ρj (fig. 1):

~ρi = ~ρj + ~rj − ~ri.

In matrix form:

ρ
(0)
i = Ajρ

(j)
j + r

(0)
j − r

(0)
i . (10)

Taking into account (10) and assumption that column vector ρ
(j)
j is constant

in the frame Ojxjyjzj (ρ
(j)
j = const), contact point velocity relative to Oixiyizi

in the frame Ooxoyozo can be written as:

ρ̇
(0)
i = Ajω̃

(j)
j ρ

(j)
j + ṙ

(0)
j − ṙ

(0)
i . (11)

After differentiating (9):

ρ̈
(i)
i = − ˙̃ω

(i)
i AiTρ

(0)
i + ω̃

(i)
i ω̃

(i)
i AiTρ

(0)
i −

− ω̃
(i)
i AiT ρ̇

(0)
i − ω̃

(i)
i AiT ρ̇

(0)
i + AiT ρ̈

(0)
i , (12)

and now:

ρ̈
(0)
i = Ȧjω̃

(j)
j ρ

(j)
j + Aj ˙̃ω

(j)
j ρ

(j)
j + r̈

(0)
j − r̈

(0)
i =

Ajω̃jω̃
(j)
j ρ

(j)
j + Aj ˙̃ω

(j)
j ρ

(j)
j + r̈

(0)
j − r̈

(0)
i . (13)
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Now, let us substitute (13) into (12):

ρ̈
(i)
i = − ˙̃ω

(i)
i ρ

(i)
i + ω̃

(i)
i ω̃

(i)
i ρ

(i)
i − ω̃

(i)
i AiT ρ̇

(0)
i −

ω̃
(i)
i AiT ρ̇

(0)
i + AiT (Ajω̃

(j)
j ω̃

(j)
j ρ

(j)
j +

Aj ˙̃ω
(j)
j ρ

(j)
j + r̈

(0)
j − r̈

(0)
i ). (14)

Rewrite last equation in order to group the terms containing accelerations:

ρ̈
(i)
i = ρ̃

(i)
i ω̇

(i)
i − AiTAj ρ̃

(j)
j ω̇

(j)
j + AiT r̈

(0)
j −

AiT r̈
(0)
i + ω̃

(i)
i ω̃

(i)
i AiTρ

(0)
i − ω̃

(i)
i AiT ρ̇

(0)
i −

ω̃
(i)
i AiT ρ̇

(0)
i + AiTAjω̃

(j)
j ω̃

(j)
j ρ

(j)
j (15)

Here the tilde operator transform any column vector a = (ax ay az)
T into the

skew-symmetric matrix:

ã =


0 −az ay

az 0 −ax
−ay ax 0


After substituting (15) to (5) we have “point on plane” equation in form:

QiXi + QjXj = bij, (16)

where the Qi and Qj are block matrices:

Qi =
(
−n

(i)T
i AiT n

(i)T
i ρ̃

(i)
i

)
, (17)

Qj =
(
n
(i)T
i AiT −n

(i)T
i AiTAj ρ̃

(j)
j

)
. (18)

Xi, Xi are acceleration matrices:

Xi =

r̈
(0)
i

ω̇
(i)
i

 , Xj =

 r̈
(0)
j

ω̇
(j)
j

 ;

and right side scalar:

bij = n
(i)T
i (2ω̃

(i)
i AiT ρ̇

(0)
i − ω̃

(i)
i ω̃

(i)
i AiTρ

(0)
i − AiTAjω̃

(j)
j ω̃

(j)
j ρ

(j)
j ). (19)

The equation (16) is a scalar constraint equation. The reaction force f this
constraint type is perpendicular to the plane Π. Let us assume that reaction
force vector acts on body j in the direction of the vector ~ni, than reaction
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force vector that acts on body i in the opposite directions of the vector ~ni. We
can write:

R
(0)
j = −R

(0)
i = n

(0)
i λ = Ain

(i)
i λ, (20)

here λ is a Lagrange multiplier. This reaction force produces torque about the
center of mass of the body j:

L
(j)
Rj

= ρ̃
(j)
j AjTAin

(i)
i λ. (21)

Torque L
(j)
Rj

is written in the body j frame. Coordinates of the torque vector
that act on body i is written as:

L
(i)
Ri

= −ρ̃(i)i n
(i)
i λ. (22)

After making comparison between (17), (18) and (21), (22), reaction force and
torque can be written as:R

(0)
j

L
(j)
Rj

 = QT
j λ,

R
(0)
i

L
(i)
Ri

 = QT
i λ. (23)

3.2 Relative rotation constraint

Here we derive constraint equation that restricts relative rotation of two bod-
ies. This equation is formulated as follows: the projection of angular acceler-
ation vector of one body relative to another body on the vector ~ni must be
zero:

n
(i)T
i ε

(i)
ij = 0. (24)

Relative angular velocity is defined as:

ω
(i)
ij = AiTAjω

(j)
j − ω

(i)
i . (25)

After differentiate the (25) we get:

ε
(i)
ij = −ω̃(i)

i AiTAjω
(j)
j + AiTAjω̃

(j)
j ω

(j)
j + AiTAjε

(j)
j − ε

(i)
i . (26)

Substituting (26) into (24) leads to:

(AjAiTn
(i)
i )T ε

(j)
j − n

(i)T
i ε

(i)
i = n

(i)T
i (ω̃

(i)
i AiTAjω

(j)
j − AiTAjω̃

(j)
j ω

(j)
j ). (27)

Equation (27) can be rewrite as follows:

Qr
iXi + Qr

jXj = brij, (28)
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Acceleration coefficient matrices (1 × 6) are written as:

Qr
j =

(
0 −n

(i)T
i

)
,

Qr
i =

(
0 (AjAiTn

(i)
i )T

)
,

(29)

brij is defined as:

brij = n
(i)T
i (ω̃

(i)
i AiTAjω

(j)
j − AiTAjω̃

(j)
j ω

(j)
j ). (30)

Reaction torque acting on body i:

L
(i)
i = (AjAiTn

(i)
i )Tλ, (31)

Reaction torque acting on body j

L
(i)
j = −n

(i)T
i λ. (32)

For long time process we should take into account that equations (16) and (28)
constraint only accelerations of bodies not position and velocity, than during
numerical simulation the original constraint (5) may not fulfill and a drift-off
from this constraint may occur. Several stabilization methods can be used to
solve this problem [16], [17]. Using Baumgarte’s method for “point on plane”
constraints we should rewrite (38) as:

bij = n
(i)T
i (ω̃

(i)
i AiT ρ̇

(0)
i − ω̃

(i)
i ω̃

(i)
i AiTρi

+ ω̃
(i)
i AiT ρ̇

(0)
i − AiTAjω̃

(j)
j ω̃

(j)
j ρ

(j)
j ) + β2εr + 2αεv, (33)

here εr is a contact point position error – distance between contact point and
the plane:

εr = n
(i)T
i (AiT (Ajρ

(j)
j − r

(0)
i + r

(0)
j ) − p

(i)
i ),

p
(i)
i - is the coordinates of any point P on the plane Π in frame i (fig. 1). The
εv is a contact point velocity error: the projection of the contact point velocity
to the vector ~n

(i)
i :

εv = n
(i)T
i (−ω̃(i)

i AiTρ
(0)
i + AiT ρ̇

(0)
i ).

Scalar parameters α and β should be [12]:

α > 0, β > 0.

To apply Baumgarte’s algorithm for the “relative rotation constraint” (30)
should be rewritten as:

brij = n
(i)T
i (ω̃

(i)
i AiTAjω

(j)
j − AiTAjω̃

(j)
j ω

(j)
j ) + n

(i)T
i (AiTAjω

(j)
j − ω

(i)
i )σ,
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where σ > 0.

Now using two types of constraint equations we can describe more complex
joints. For example three “point on plane” constraint equations and two rota-
tional constraint equations describe cylindrical joint with one rotational DOF.
Below we consider some examples of using obtained constrain equations.

4 Three-link mechanism

At first let’s consider a simple 3-link mechanism shown at fig 2 under the
action of gravity force acting along the y0 Cartesian direction. The rigid link
1 is connected to the ground and the link 2 by two spherical joints A and B
respectively, the link 2 connected to link 3 by the cylindrical joint C. Each
link has length l1 = l2 = l3 = l = 1 m, mass m1 = m2 = m3 = m = 1 kg and
inertia tensor in the principal axis:

J
(1)
1 = J

(2)
2 = J

(3)
3 =


Jx 0 0

0 Jy 0

0 0 Jz


where Jx = 0.013 kg ·m2 and Jy = Jz = 0.083 kg ·m2. At the joint A is defined

spherical joint

cylindrical joint

spherical joint

,

,

,

Figure 2. Three-link mechanism

three unit vectors ~n1, ~n2, ~n3 aligned with inertia axis x0, y0 and z0 respectively.
Point A and these vectors define three planes connected with ground. We can
write three constraints equations using (16):

Q0kX0 + Q1kX1 = bk, k = 1 . . . 3 (34)

We suppose that body 0 (ground) is fixed than Ẍ0 = 0,A0 = E3×3 (unit
matrix), and last equation become the form:

Q1kX1 = bk, k = 1 . . . 3 (35)
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where the Q1k is defined as:

Qk1 =
(
n
(0)T
k −n

(0)T
k A1ρ̃

(1)
1

)
, k = 1 . . . 3

and:

X1 =
(
r̈
(0)
1 ω̇

(1)
1

)T
The right side of the (35) is written as:

bk = −A1ω̃
(1)
1 ω̃

(1)
1 ρ

(1)
1 , k = 1, 2, 3. (36)

where

ρ
(1)
1 =

(
− l1

2
0 0

)T
= const.

Unit vectors coordinates in ground frame can be defined as:

n
(0)
1 =

(
1 0 0

)T
, n

(0)
2 =

(
0 1 0

)T
, n

(0)
3 =

(
0 0 1

)T
.

The constraint equations for joint B are written as:

Q1kX1 + Q2kX2 = bk, k = 4 . . . 6 (37)

where the Q1k is defined as:

Q1k =
(
−n

(1)T
k A1T n

(1)T
k ρ̃

(1)
1

)
, k = 4 . . . 6

and the row matrix Q2k:

Q2k =
(
n
(1)T
k A1T −n

(1)T
k A1TA2ρ̃

(2)
2

)
, k = 4 . . . 6

Scalar bk is written as:

bk = n
(1)T
k (2ω̃

(1)
1 A1T ρ̇

(0)
1 − ω̃

(1)
1 ω̃

(1)
1 A1Tρ

(0)
1

− A1TA2ω̃
(2)
2 ω̃

(2)
2 ρ

(2)
2 ), k = 4, 5, 6. (38)

Unit vectors in the link 1 frame are defined as:

n
(1)
4 =

(
1 0 0

)T
, n

(1)
5 =

(
0 1 0

)T
, n

(1)
6 =

(
0 0 1

)T
.

These vectors define three planes connected with link 1.

To describe cylindrical joint C we should write three equations “point on
plane“ and two equations that restrict rotation of the link 3 relative to the
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link 2 around axis defined by vectors ~n10 and ~n11. First three equations looks
like constraints equations for joint B:

Q2kX2 + Q3kX3 = bk, k = 7 . . . 9 (39)

where

Q2k =
(
−n

(2)T
k A2T n

(2)T
k ρ̃

(2)
2

)
, k = 7 . . . 9

Q3k =
(
n
(2)T
k −n

(2)T
k A3ρ̃

(3)
3

)
, k = 7 . . . 9

Unit vectors in the link 2 frame are defined as:

n
(2)
7 =

(
1 0 0

)T
, n

(2)
8 =

(
0 1 0

)T
, n

(2)
9 =

(
0 0 1

)T
.

Equations that restricts relative rotation:

Q2kX2 + Q3kX3 = bk, k = 10, 11 (40)

where

Q2k =
(
0 −n

(2)T
k

)
, k = 10, 11

Q3k =
(
0 (A3TA2Tn

(2)
k )T

)
, k = 10, 11

Restrict rotation axes are defined as:

n
(2)
10 = n

(2)
7 , n

(2)
11 = n

(2)
8 .

Let us write all equations that describe considered mechanism:



M1 0 0 ΨT
11 ΨT

12 0

0 M2 0 0 ΨT
22 ΨT

23

0 0 M3 0 0 ΨT
33

Ψ11 0 0 0 0 0

Ψ12 Ψ22 0 0 0 0

0 Ψ23 Ψ33 0 0 0





X1

X2

X3

Λ1

Λ2

Λ3


=



P1

P2

P3

B1

B2

B3


(41)

Block matrices Ψ1k (k = 1 . . . 3) include matrices Qij pertaining to joint k:

Ψ11 =


Q11

Q12

Q13

 , Ψ12 =


Q14

Q15

Q16

 , Ψ22 =


Q24

Q25

Q26

 ,
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Ψ23 =



Q27

Q28

Q29

Q2,10

Q2,11


, Ψ33 =



Q37

Q28

Q29

Q3,10

Q3,11


,

Column matrices Λk include Lagrange multipliers for the joint k:

Λ1 =
(
λ1 λ2 λ3

)
, Λ2 =

(
λ4 λ5 λ6

)
, Λ3 =

(
λ7 λ8 λ9 λ10 λ11

)
External forces and torques are contained in matrices Pi:

Pk =

 F
(0)
k

L
(k)
k + ω̃

(k)
k J

(k)
k ω

(k)
k

 , F
(0)
k =

(
0 −mg 0

)
, L

(k)
k =

(
0 0 0

)
.

Column matrices Bk include right side expressions of the constraint equations:

B1 =
(
b1 b2 b3

)T
, B2 =

(
b4 b5 b6

)T
, B3 =

(
b7 b8 b9 b10 b11

)T
(41) should be supplemented by kinematic equations to obtain rotation matri-
ces A1, A2, A3, that can be expressed in terms of Euler angles, quaternions.
For example, rotation matrices can be obtained from differential equations:

Ȧi = Aiω̃
(i)
i . (42)

The resulting equation set (41) with kinematic equations (42) was solved in
MATLAB (Runge-Kutta rkf45 method is used). At fig. 3 several snapshots of
the motion three-link mechanism is shown. Energy error for this conservative
system is shown at fig 4. Energy error graph was found for two cases. In first
case constraints equation are written without stabilization term. In second
case constraints equations are written using Bumgarte’s additional terms. By
means of it energy error is reduced. Figure 5 illustrate position-level drift-off
(εr) of the constraints 6 and 7 with and without Baumgarte’s stabilization
technique.

5 Separating first stage booster

Here we consider first stage separation subsystem of a “Soyuz”-like space
carrier vehicle. During separation process either of the four first stage booster
rotate about joint at them cone by the engine after-action pulse. First stage
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t=0 s

t=0.4 s

t=0.6 s

t=1.0 s

Figure 3. Three-link mechanism motion
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Figure 4. Energy error

booster thrust reduction leads to process in which booster slides over the core
stage. Contact point slides several millimeters, than nozzle of gas-pressurized
tank is opened. This nozzle create force that turns and completely separates
first stage booster from core stage (fig. 6).

Let us write down the equations of this mechanical system. This model can
be used for safety analysis of the system in depend on system parameters. For
the sake of simplicity we write constraint equations for only one booster. At
the first motion stage first stage booster can rotate around it’s nose contact
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Figure 5. Constraints drift-off

Stage I Stage IIIStage II

booster 1

ЦБ

Figure 6. Motion phases of the first stage booster

point (fig. 6). We need three “point on plane” equations that are written as:


Qc1 Q11

Qc2 Q12

Qc3 Q13


Xc

X1

 =


b1

b2

b3

 . (43)

Ẍc, Ẍ1 - translational and rotational accelerations column matrices for booster
and the core stage. Coefficient matrices (44) and (45) differs by unit vector

n
(c)
1 , n

(c)
2 and n

(c)
3 only. These vectors determinate restricted directions for

contact point motion at first stage (fig. 7) (the ~n3 vector is not shown at this
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picture).

Qck =
(
−n

(c)T
k AcT n

(c)T
k ρ̃(c)c

)
, (44)

Q1k =
(
n
(c)T
k AcT −n

(c)T
k AcTA1ρ̃

(1)
1

)
. (45)

bk = n
(c)T
k (ω̃(c)

c AcT ρ̇
(0)
c1 − ω̃(c)

c ω̃(c)
c AcTρ

(0)
c1

+ ω̃(c)
c AcT ρ̇

(0)
c1 − AcTA1ω̃

(1)
1 ω̃

(1)
1 ρ

(1)
1c ), k = 1, 2, 3. (46)

ω(c)
c - core stage angular velocity column matrix; ω

(1)
1 - first stage booster

angular velocity column matrix; ρ
(c)
c1 , ρ

(1)
1c - joint vectors in the core stage and

in the booster frame respectively; Ac,A1 - coordinate transformation matrices
for the core stage and the booster. Reaction force acting on first stage booster

booster 1

Figure 7. Contact between the first stage booster and the core stage

written as:

R
(0)
k = −R

(0)
ck = n

(c)T
k A1Tλk, k = 1, 2, 3.

here λk - is a Lagrange multiplier, that correspond to k constraint equation.
Core stage experiences the reaction force acting in the opposite direction.
Reaction force produces a torque L

(1)
Ri

:

L
(1)
Rk

= n
(c)T
k AcTA1ρ̃

(1)
1c λi, i = 1, 2, 3.
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Full equations set for first stage is written as:

Mc 0 QT
c1 QT

c2 QT
c3

0 M1 QT
11 QT

12 QT
13

Qc1 Q11 0 0 0

Qc2 Q12 0 0 0

Qc3 Q13 0 0 0





Xc

X1

λ1

λ2

λ3


=



P(0)
c

P
(0)
1

b1

b2

b3


(47)

where:

Mc =

I3×3mc 0

0 J(c)
c

 , M1 =

I3×3m1 0

0 J
(1)
1



P(0)
c =

 AcF(c)
pc

ω̃(c)
c J(c)

c ω
(c)
c

 , P
(0)
1 =

 A1F
(1)
p1

ω̃
(1)
1 J

(1)
1 ω

(1)
1


Second stage of the motion starts when constraint force become less or equal
than zero. During numerical integration algorithm should track the λ1 value
and stop integration process when:

λ1 ≤ 0.

For example in MATLAB environment it can be performed using ’event’ op-
tion in the “odefile“. Second stage constraint equation system includes only
two equations of (43) for n

(c)
2 , n

(c)
3 . Relative translation along vector n

(c)
1 is

permissible: booster slides on the surface of the core stage. Third stage of
the motion starts when constraint force become less or equal than zero, when
booster detaches from the rocket:

λ2 ≤ 0.

Third stage equations are free of constraints equations.

At fig. 8 you can see temporal evolution of reaction forces R1 and R2. Reaction
R1 reaches zero at time about 0.7s when booster starts to slide. Later reaction
R2 reaches zero and after this event booster moves as a free body. On fig. 9
trajectorie of first stage boosters are showed.

6 Conclusion

Constraint equations form for mechanical systems with changing structure is
proposed. Advantages of this equations form may be summarized as follows:
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Figure 8. Reaction forces R1 and R2

Figure 9. First stage booster trajectory

multibody structure change does not affect to variables set that describes sys-
tem configuration, structure change is modeled by adding or removal simple
constraint equations. Using proposed method models of rocket separation sub-
system was build: separation process of first stage boosters that can be used
for safety analysis of this mechanical system.

There are many commercial software for simulating multibody systems (e.g.
MSC/ADAMS, “Universal mechanism“, “Euler”). In spite of this, proposed
method offer several advantages over them. It provide full control over model
building process that give assurance in results adequacy. Besides, proposed
method can be easy implemented on free matrix-oriented software (OCTAVE,
SciLab) and this method enables us to solve complex problems of mechanical
systems with changing structure. Also it’s possible to use this method for
educational purposes.
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