chaos

Презентация для 67 Международного астронавтического конгресса (Гвадалахара, Мексика, 26-30 Сентября 2016), посвященная хаотическому движению двух КА на тросовой связи при действии малой тяги.

Авторы
V. S. Aslanov
Тип материала
статья
Издательство, журнал, сборник.
Journal of Guidance, Control and Dynamics
Реферат, аннотация

doi: 10.2514/1.G001460

Cтатья Асланова В. С. и Юдинцева В. В. "Dynamics and chaos control of gyrostat satellite", посвященная хаотической динамике спутников-гиростатов опубликована в журнале "Chaos, Solitons & Fractals" (Volume 45, Issues 9–10, September–October 2012, Pages 1100–1107, DOI: 10.1016/j.chaos.2012.06.008,). Электронная версия статьи статьи доступна: http://www.sciencedirect.com/science/article/pii/S0960077912001324.

New paper is published in "Chaos, Solitons & Fractals"!
Авторы
V. S. Aslanov
V. V. Yudintsev
Тип материала
статья
Издательство, журнал, сборник.
Chaos, Solitons & Fractals, Volume 45, Issues 9–10, September–October 2012
Реферат, аннотация

We consider the chaotic motion of the free gyrostat consisting of a platform with a triaxial inertia ellipsoid and a rotor with a small asymmetry with respect to the axis of rotation. Dimensionless equations of motion of the system with perturbations caused by small asymmetries of the rotor are written in Andoyer-Deprit variables. These perturbations lead to separatrix chaos. For gyrostats with different ratios of moments of inertia heteroclinic and homoclinic trajectories are written in closed-form. These trajectories are used for constructing modified Melnikov function, which is used for determine the control that eliminates separatrix chaos. Melnikov function and phase space trajectory are built to show the effectiveness of the control.

18 октября 2011 года в 14:30 в Центре аэрокосмической науки и технологий, Университет Бейра Интериор, г. Ковильян, Португалия (Centre for Aerospace Science and Technologies, University of Beira Interior, Covilha, Portugal) состоялся семинар проф. Асланова В. С. на тему "Регулярная и хаотическая динамика спутников-гиростатов".

Авторы
Vladimir S. Aslanov
Тип материала
статья
Издательство, журнал, сборник.
In the book: Elhadj Z., Models and Applications of Chaos Theory in Modern Sciences, Science Publishers, [Science Publishers(USA), Jersey, British Isles, Enfield, New Hampshire], (2011) pp. 627-644, (ISBN:  9781578087228)
Реферат, аннотация

Motion of a biharmonic system under action of small periodic force and small damped force is studied. The biharmonic oscillator is a physical system acting under a biharmonic force like: a sin θ + b sin 2θ. The article contains biharmonic oscillator analysis, phase space research, and analytic solutions for separatrixes. The biharmonic oscillator performs chaotic motion near separatrixes under small perturbations. Melnikov method gives analytical criterion for heteroclinic chaos in terms of system parameters. A transition from chaotic to regular motion of the biharmonic oscillator was found as the heteroclinic chaos can be removed by increasing the coefficient of a damping force. The analytical results obtained using Melnikov method has been confirmed by a good match with numeric research.